Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338873

RESUMO

State-of-the-art Li batteries suffer from serious safety hazards caused by the reactivity of lithium and the flammable nature of liquid electrolytes. This work develops highly efficient solid-state electrolytes consisting of imidazolium-containing polyionic liquids (PILs) and lithium bis(trifluoromethane sulfonyl)imide (LiTFSI). By employing PIL/LiTFSI electrolyte membranes blended with poly(propylene carbonate) (PPC), we addressed the problem of combining ionic conductivity and mechanical properties in one material. It was found that PPC acts as a mechanically reinforcing component that does not reduce but even enhances the ionic conductivity. While pure PILs are liquids, the tricomponent PPC/PIL/LiTFSI blends are rubber-like materials with a Young's modulus in the range of 100 MPa. The high mechanical strength of the material enables fabrication of mechanically robust free-standing membranes. The tricomponent PPC/PIL/LiTFSI membranes have an ionic conductivity of 10-6 S·cm-1 at room temperature, exhibiting conductivity that is two orders of magnitude greater than bicomponent PPC/LiTFSI membranes. At 60 °C, the conductivity of PPC/PIL/LiTFSI membranes increases to 10-5 S·cm-1 and further increases to 10-3 S·cm-1 in the presence of plasticizers. Cyclic voltammetry measurements reveal good electrochemical stability of the tricomponent PIL/PPC/LiTFSI membrane that potentially ranges from 0 to 4.5 V vs. Li/Li+. The mechanically reinforced membranes developed in this work are promising electrolytes for potential applications in solid-state batteries.


Assuntos
Líquidos Iônicos , Propano/análogos & derivados , Lítio , Eletrólitos , Íons , Poli A , Polímeros
3.
ACS Omega ; 9(6): 6253-6279, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371831

RESUMO

The development in the field of high refractive index materials is a crucial factor for the advancement of optical devices with advanced features such as image sensors, optical data storage, antireflective coatings, light-emitting diodes, and nanoimprinting. Sulfur plays an important role in high refractive index applications owing to its high molar refraction compared to carbon. Sulfur exists in multiple oxidation states and can exhibit various stable functional groups. Over the last few decades, sulfur-containing polymers have attracted much attention owing to their wide array of applications governed by the functional group of sulfur present in the polymer repeat unit. The interplay of refractive index and various other polymer properties contributes to successfully implementing a specific polymer material in optical applications. The focus on developing optoelectronic devices induced an ever-increasing need to integrate different functional materials to achieve the devices' full potential. Several devices that see the potential use of sulfur in high refractive index materials are reviewed in the study. Like sulfur, selenium also exhibits high molar refraction and unique chemical properties, making it an essential field of study. This review covers the research and development in the field of sulfur and selenium in different forms of functionality, focusing on the chemistry of bonding and the optical properties of the polymers containing the heteroatoms mentioned above. The strategy and rationale behind incorporating heteroatoms in a polymer matrix to produce high-refractive-index materials are also described in the present review.

4.
ACS Omega ; 9(6): 7270, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371764

RESUMO

[This retracts the article DOI: 10.1021/acsomega.9b00170.].

5.
Biomacromolecules ; 24(12): 5807-5822, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37984848

RESUMO

In recent years, there has been growing attention to designing synthetic protocells, capable of mimicking micrometric and multicompartmental structures and highly complex physicochemical and biological processes with spatiotemporal control. Controlling metabolism-like cascade reactions in coacervate protocells is still challenging since signal transduction has to be involved in sequential and parallelized actions mediated by a pH change. Herein, we report the hierarchical construction of membraneless and multicompartmentalized protocells composed of (i) a cytosol-like scaffold based on complex coacervate droplets stable under flow conditions, (ii) enzyme-active artificial organelles and a substrate nanoreservoir capable of triggering a cascade reaction between them in response to a pH increase, and (iii) a signal transduction component based on the urease enzyme capable of the conversion of an exogenous biological fuel (urea) into an endogenous signal (ammonia and pH increase). Overall, this strategy allows a synergistic communication between their components within the membraneless and multicompartment protocells and, thus, metabolism-like enzymatic cascade reactions. This signal communication is transmitted through a scaffold protocell from an "inactive state" (nonfluorescent protocell) to an "active state" (fluorescent protocell capable of consuming stored metabolites).


Assuntos
Células Artificiais , Células Artificiais/química , Células Artificiais/metabolismo , Transdução de Sinais
6.
Biomacromolecules ; 24(12): 5797-5806, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37939018

RESUMO

Amyloid ß peptide can aggregate into thin ß-sheet fibrils or plaques deposited on the extracellular matrix, which is the hallmark of Alzheimer's disease. Multifunctional macromolecular structures play an important role in inhibiting the aggregate formation of amyloidogenic materials and thus are promising candidates with antiamyloidogenic characteristics for the development of next-generation therapeutics. In this study, we evaluate how small differences in the dendritic topology of these structures influence their antiamyloidogenic activity by the comparison of "perfectly dendritic" and "pseudodendritic" macromolecules, both decorated with mannose units. Their compactness, the position of surface units, and the size of glyco-architectures influence their antiamyloidogenic activity against Aß 40, a major component of amyloid plaques. For the advanced analysis of the aggregation of the Aß peptide, we introduce asymmetric flow field flow fractionation as a suitable method for the quantification of large and delicate structures. This alternative method focuses on the quantification of complex aggregates of Aß 40 and glycodendrimer/glyco-pseudodendrimer over different time intervals of incubation, showing a good correlation to ThT assay and CD spectroscopy results. Kinetic studies of the second-generation glyco-pseudodendrimer revealed maximum inhibition of Aß 40 aggregates, verified with atomic force microscopy. The second-generation glyco-pseudodendrimer shows the best antiamyloidogenic properties confirming that macromolecular conformation in combination with optimal functional group distribution is the key to its performance. These molecular properties were validated and confirmed by molecular dynamics simulation.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/química , Cinética , Simulação de Dinâmica Molecular , Estrutura Molecular , Substâncias Macromoleculares , Fragmentos de Peptídeos/química
7.
ACS Omega ; 8(45): 43236-43242, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024668

RESUMO

High refractive index (RI) polyimide/titania nanoparticle hybrid materials were synthesized and characterized in this study. The polyimide synthesis took place via the conventional polycondensation process following the preparation of poly(amic acid), and the nanoparticles were incorporated using an in situ sol-gel process. Thin films of the polyimide/titania nanoparticle hybrids were prepared by optimizing the coating conditions using a spin coater. Thermal imidization of the nanoparticle containing poly(amic acid) films on Si wafers was completed in a temperature-controlled drying oven under a N2 atmosphere. Fourier transform infrared spectroscopy revealed the successful formation of inorganic bonds as well as imide linkages, and transmission electron microscopy results show well-dispersed nanocrystalline TiO2 nanoparticles of around 5 nm in the polymer matrix. Thorough optimization of the reaction time and concentration of TiO2 precursors enabled to achieve a titania content as high as 30% (wt). The RI of the resultant hybrid materials was found to be tunable according to the titania content, while the RI increased linearly with increasing titania content. A homogeneous hybrid material with a very high RI of 1.84 at 589 nm was achieved in this work for 30% (wt) TiO2.

8.
Des Monomers Polym ; 26(1): 198-213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840643

RESUMO

Polymeric single chloride-ion conductor networks based on acrylic imidazolium chloride ionic liquid monomers AACXImCYCl as reported previously are prepared. The chemical structure of the polymers is varied with respect to the acrylic substituents (alkyl spacer and alkyl substituent in the imidazolium ring). The networks are examined in detail with respect to the influence of the chemical structure on the resulting properties including thermal behavior, rheological behavior, swelling behavior, and ionic conductivity. The ionic conductivities increase (by two orders of magnitude from 10-6 to 10-4 S·cm-1 with increasing temperature), while the complex viscosities of the polymer networks decrease simultaneously. After swelling in water for 1 week the ionic conductivity reaches values of 10-2 S·cm-1. A clear influence of the spacer and the crosslinker content on the glass transition temperature was shown for the first time in these investigations. With increasing crosslinker content, the Tg values and the viscosities of the networks increase. With increasing spacer length, the Tg values decrease, but the viscosities increase with increasing temperature. The results reveal that the materials represent promising electrolytes for batteries, as proven by successful charging/discharging of a p(TEMPO-MA)/zinc battery over 350 cycles.

9.
Small Methods ; 7(12): e2300257, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37599260

RESUMO

Modern medical research develops interest in sophisticated artificial nano- and microdevices for future treatment of human diseases related to biological dysfunctions. This covers the design of protocells capable of mimicking the structure and functionality of eukaryotic cells. The authors use artificial organelles based on trypsin-loaded pH-sensitive polymeric vesicles to provide macrophage-like digestive functions under physiological conditions. Herein, an artificial cell is established where digestive artificial organelles (nanosize) are integrated into a protocell (microsize). With this method, mimicking crossing of different biological barriers, capture of model protein pathogens, and compartmentalized digestive function are possible. This allows the integration of different components (e.g., dextran as stabilizing block) and the diffusion of pathogens in simulated cytosolic environment under physiological conditions. An integrated characterization approach is carried out, with identifying electrospray ionization mass spectrometry as an excellent detection method for the degradation of a small peptide such as ß-amyloid. The degradation of model enzymes is measured by enzyme activity assays. This work is an important contribution to effective biomimicry with the design of cell-like functions having potential for therapeutic action.


Assuntos
Células Artificiais , Humanos , Células Artificiais/química , Células Artificiais/metabolismo , Biomimética/métodos , Proteínas/química , Macrófagos , Digestão
10.
Biomacromolecules ; 24(6): 2489-2500, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37253064

RESUMO

Structures and functions of eukaryotic cells with an outer permeable membrane, a cytoskeleton, functional organelles, and motility can be mimicked by giant multicompartment protocells containing various synthetic organelles. Herein, two kinds of artificial organelles with stimuli-triggered regulation ability, glucose oxidase-(GOx)-loaded pH-responsive polymersomes A (GOx-Psomes A) and urease-loaded pH-responsive polymersomes B (Urease-Psomes B), and a pH-sensor (Dextran-FITC) are encapsulated into proteinosomes via the Pickering emulsion method. Thus, a polymersomes-in-proteinosome system is constructed which is able to probe biomimetic pH homeostasis. Alternating fuels (glucose or urea) introduced from outside the protocell penetrate the membrane of proteinosomes and enter into GOx-Psomes A and Urease-Psomes B to produce chemical signals (gluconic acid or ammonia) resulting in pH-feedback loops (pH jump and pH drop). This will counteract the catalytic "switch on" or "switch off" of enzyme-loaded Psomes A and B owing to their different pH-responsive membranes. Dextran-FITC in the proteinosome allows self-monitoring of slight pH fluctuations in the lumen of protocells. Overall, this approach shows heterogeneous polymersome-in-proteinosome architectures with sophisticated features such as input-regulated pH changes mediated by negative and positive feedback in loops and cytosolic pH self-monitoring, features that are imperative for advanced protocell design.


Assuntos
Dextranos , Urease , Citosol , Fluoresceína-5-Isotiocianato , Dextranos/química , Retroalimentação , Biomimética , Concentração de Íons de Hidrogênio
11.
Adv Sci (Weinh) ; 10(17): e2207214, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37076948

RESUMO

Defects in cellular protein/enzyme encoding or even in organelles are responsible for many diseases. For instance, dysfunctional lysosome or macrophage activity results in the unwanted accumulation of biomolecules and pathogens implicated in autoimmune, neurodegenerative, and metabolic disorders. Enzyme replacement therapy (ERT) is a medical treatment that replaces an enzyme that is deficient or absent in the body but suffers from short lifetime of the enzymes. Here, this work proposes the fabrication of two different pH-responsive and crosslinked trypsin-loaded polymersomes as protecting enzyme carriers mimicking artificial organelles (AOs). They allow the enzymatic degradation of biomolecules to mimic simplified lysosomal function at acidic pH and macrophage functions at physiological pH. For optimal working of digesting AOs in different environments, pH and salt composition are considered the key parameters, since they define the permeability of the membrane of the polymersomes and the access of model pathogens to the loaded trypsin. Thus, this work demonstrates environmentally controlled biomolecule digestion by trypsin-loaded polymersomes also under simulated physiological fluids, allowing a prolonged therapeutic window due to protection of the enzyme in the AOs. This enables the application of AOs in the fields of biomimetic therapeutics, specifically in ERT for dysfunctional lysosomal diseases.


Assuntos
Células Artificiais , Tripsina/metabolismo , Lisossomos , Organelas , Proteínas/metabolismo
12.
Macromol Rapid Commun ; 44(16): e2200885, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36755359

RESUMO

Various cellular functions are successfully mimicked, opening the door to the next generation of therapeutic approaches and systems biology. Herein, the first steps are taken toward the construction of artificial organelles for mimicking cell communication by docking and undocking of cargo in the membrane of swollen artificial organelles. Stimuli-responsive and crosslinked polymeric vesicles are used to allow docking processes at acidic pH at which ferrocene units in the swollen membrane state can undergo desired specific host-guest interaction using ß-cyclodextrin as model cargo. The release of the cargo mediated by two different enzymes, glucose oxidase and α-amylase, is investigated, triggered by distinct enzymatic undocking mechanisms. Different release times for a useful transport are shown that can be adapted to different communication pathways. In addition, Förster resonance energy transfer (FRET) experiments further support the hypotheses of host-guest inclusion complexation formation and their time-dependent breakdown. This work paves a way to a platform based on polymeric vesicles for synthetic biology, cell functions mimicking, and the construction of multifunctional cargo delivery system.


Assuntos
Células Artificiais , Polímeros
13.
Micromachines (Basel) ; 14(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36677242

RESUMO

For thermoelectric applications, both p- and n-type semi-conductive materials are combined. In melt-mixed composites based on thermoplastic polymers and carbon nanotubes, usually the p-type with a positive Seebeck coefficient (S) is present. One way to produce composites with a negative Seebeck coefficient is to add further additives. In the present study, for the first time, the combination of single-walled carbon nanotubes (SWCNTs) with polyvinylpyrrolidone (PVP) in melt-mixed composites is investigated. Polycarbonate (PC), poly(butylene terephthalate) (PBT), and poly(ether ether ketone) (PEEK) filled with SWCNTs and PVP were melt-mixed in small scales and thermoelectric properties of compression moulded plates were studied. It could be shown that a switch in the S-value from positive to negative values was only possible for PC composites. The addition of 5 wt% PVP shifted the S-value from 37.8 µV/K to -31.5 µV/K (2 wt% SWCNT). For PBT as a matrix, a decrease in the Seebeck coefficient from 59.4 µV/K to 8.0 µV/K (8 wt% PVP, 2 wt% SWCNT) could be found. In PEEK-based composites, the S-value increased slightly with the PVP content from 48.0 µV/K up to 54.3 µV/K (3 wt% PVP, 1 wt% SWCNT). In addition, the long-term stability of the composites was studied. Unfortunately, the achieved properties were not stable over a storage time of 6 or 18 months. Thus, in summary, PVP is not suitable for producing long-term stable, melt-mixed n-type SWCNT composites.

14.
Macromol Rapid Commun ; 44(16): e2200869, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36702804

RESUMO

The integration of microscopic hydrogels with high specific surface area and physically reactive groups into microfluidic systems for selective molecular interactions is attracting increasing attention. Herein, the reversible capture and release of molecules through host-guest interactions of hydrogel dots in a microfluidic device is reported, which translates the supramolecular chemistry to the microscale conditions under continuous flow. Polyacrylamide (PAAm) hydrogel arrays with grafted ß-cyclodextrin (ß-CD)  modified poly(2-methyl-2-oxazoline) (CD-PMOXA) chains are fabricated by photopolymerization and integrated into a polydimethylsiloxane (PDMS)-on-glass chip. The ß-CD/adamantane (ß-CD/Ada) host-guest complex is confirmed by two dimensional Nuclear Overhauser Effect Spectroscopy NMR (2D NOESY NMR) prior to transfer to microfluidics. Ada-modified molecules are successfully captured by host-guest interaction formed between the CD-PMOXA grafted chains in the hydrogel network and the guest molecule in the solution. Furthermore, the captured molecules are released by perfusing free ß-CD with higher binding affinity than those grafted in the hydrogel array. A small guest molecule adamantane-fluorescein-isothiocyanate (Ada-FITC) and a macromolecular guest molecule (Ada-PMOXA-Cyanine 5 (Cy5)) are separately captured and released for three times with a release ratio up to 46% and 92%, respectively. The reproducible capture and release of functional molecules with different sizes demonstrates the stability of this hydrogel system in microfluidics and will provide an opportunity for future applications.


Assuntos
Adamantano , Ciclodextrinas , Hidrogéis/química , Microfluídica , Ciclodextrinas/química , Substâncias Macromoleculares/química , Adamantano/química
15.
Adv Funct Mater ; 33(50)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38344241

RESUMO

The intricate nature of eukaryotic cells with differently viscous intracellular compartments provides (membrane-active) enzymes to trigger time- and concentration-dependent processes in the intra-/extracellular matrix. Herein, we capitalize on membrane-active artificial organelles (AOs) to develop fluidic and stable proteinaceous membrane-based protocells. AOs in protocells induce the self-assembly of oligopeptides into an artificial cytoskeleton that underline their influence on the structure and functionality of protocells. A series of microscopical tools is used to validate the intracellular assembly and distribution of cytoskeleton, the changing protocells morphology, and AOs inclusion within cytoskeletal growth. Thus, the dynamics, diffusion and viscosity of intracellular components in the presence of cytoskeleton are evaluated by fluorescence tools and enzymatic assay. Membrane-active alkaline phosphatase in polymersomes as AOs fulfills the requirements of biomimetic eukaryotic cells to trigger intracellular environment, mobility, viscosity, diffusion and enzymatic activity itself as well as high mechanical stability and high membrane fluidity of protocells. Thus membrane-active AOs in protocells thoroughly provide a variable reaction space in a changing intracellular environment and underline their regulatory role in the fabrication of complex protocell architectures and functions. This study demonstrates an important contribution to effective biomimicry of cell-like structures, shapes and functions.

16.
Biomacromolecules ; 23(11): 4655-4667, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36215725

RESUMO

The development of compartments for the design of cascade reactions in a local space requires a selective spatiotemporal control. The combination of enzyme-loaded polymersomes with enzymelike units shows a great potential in further refining the diffusion barrier and the type of reactions in nanoreactors. Herein, pH-responsive and ferrocene-containing block copolymers were synthesized to realize pH-stable and multiresponsive polymersomes. Permeable membrane, peroxidase-like behavior induced by the redox-responsive ferrocene moieties and release properties were validated using cyclovoltammetry, dye TMB assay, and rupture of host-guest interactions with ß-cyclodextrin, respectively. Due to the incorporation of different block copolymers, the membrane permeability of glucose oxidase-loaded polymersomes was changed by increasing extracellular glucose concentration and in TMB assay, allowing for the chemoenzymatic cascade reaction. This study presents a potent synthetic, multiresponsive nanoreactor platform with tunable (e.g., redox-responsive) membrane properties for potential application in therapeutics.


Assuntos
Peróxido de Hidrogênio , Polímeros , Metalocenos , Concentração de Íons de Hidrogênio , Polímeros/farmacologia , Oxirredução , Peroxidases
17.
Biomacromolecules ; 23(9): 3648-3662, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35981858

RESUMO

Most sophisticated biological functions and features of cells are based on self-organization, and the coordination and connection between their cell organelles determines their key functions. Therefore, spatially ordered and controllable self-assembly of polymersomes to construct clusters to simulate complex intracellular biological functions has attracted widespread attention. Here, we present a simple one-step copper-free click strategy to cross-link nanoscale pH-responsive and photo-cross-linked polymersomes (less than 100 nm) to micron-level clusters (more than 90% in 0.5-2 µm range). Various influencing factors in the clustering process and subsequent purification methods were studied to obtain optimal clustered polymeric vesicles. Even when polymeric vesicles separately loaded with different enzymes (glucose oxidase and myoglobin) are coclustered, the overall permeability of the clusters can still be regulated through tuning the pH values on demand. Compared with simple blending of those enzyme-loaded polymersomes, the rate of enzymatic cascade reaction increased significantly due to the interconnected complex microstructure established. The connection of catalytic nanocompartments into clusters confining different enzymes of a cascade reaction provides an excellent platform for the development of artificial systems mimicking natural organelles or cells.


Assuntos
Células Artificiais , Análise por Conglomerados , Glucose Oxidase , Concentração de Íons de Hidrogênio , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...